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1. Introduction

Heterogeneous networks of diverse workstations, servers, PCs and parallel computers become most
common parallel architectures available. Such networks are characterised by the diversity of
performances of computing nodes as well as the diversity of bandwidths and speeds of communication
links. Progress in network technologies heightens performance potential of networks of computers
(note, that throughout most of the 1990s network technology outstripped processor technology [1]).
Therefore, often more performance can be achieved by using the same set of computers utilized via up-
to-date network equipment as a single distributed memory machine rather than with a new more
powerful computer.

To utilize a heterogeneous network of computers as a single distributed memory machine, dedicated
tools are needed. To be useful for a wide range of users, such tools should:

- support efficient parallel programming (to exploit performance potential of particular networks);

- support portable parallel programming (to allow applications once developed for a particular
network to run on other networks);

- support modular parallel programming (to allow to develop and use parallel libraries);

- support efficiently portable parallel programming (to allow to develop portable programs adaptable
to peculiarities of a particular executing network to exploit its performance potential as efficient as
possible);

- support an easy-in-use programming model (to allow the development of really complex and
reliable parallel applications).

There are two main approaches to portable programming distributed memory machines. The first one
is based on high-level programming languages like HPF [2]. HPF supports an easy-in-use model of
parallel programming. It was standardized a couple years ago. High-quality portable HPF compilers
(for example, from the Portland Group) compliant to the HPF Standard have already appeared and can
be used to develop portable and modular parallel applications. But HPF as well as its predecessor
Fortran D [3] and other high-level programming languages (such as Dataparallel C [4], Modula-2* [5],
etc.) are not intended for programming heterogeneous network of computers. The point is that
homogeneous multiprocessor with very fast communications among their nodes is an inherent model
underlying these languages (as well as some packages like ScaLAPACK [6]). The model comes from
massively parallel computers being originally a target architecture for these languages. Therefore,
HPF, supporting efficiently portable parallel programming for massively parallel computers and
homogeneous clusters of workstations connected with very fast network equipment, does not support
that for heterogeneous networks.

The second approach ensures efficient parallel programming a particular network of computers and
is based on message-passing function extensions of C, C++ and Fortran 77 like MPI (Message Passing
Interface).

There are numerous run-time systems to utilize a heterogeneous network of computers as a single
distributed memory machine (such as PVM [7], Nexus [8], PARMACS [9], p4 [10] etc.), but currently
most research efforts in this area concentrate about MPI. Unlike other popular message-passing
package - PVM, MPI has been standardized as MPI 1.1 [11] and widely implemented in compliance
with the Standard. Therefore, MPI supports portable parallel programming. The second important
advantage of MPI is that the notion of communicator introduced in MPI allows to write and compile
independently different modules of the entire parallel program. That is, MPI (unlike, say, PVM)
supports modular parallel programming and, hence, the development of parallel libraries.

A big group of researchers continue working on MPI functionalities to prepare the MPI-2 standard
[12]. Planned additions include dynamic processes, one-sided communications, extended collective
operations, external interfaces, additional language bindings, and I/O.

Now the main research problem, related to MPI, concludes in such implementations of MPI that run
on a wide range of essentially heterogeneous networks and provide efficient communications. Portable
implementations of MPI (such as MPICH), implementation of broadcasting via multicasting,
mulitiprotocol implementations of MPI permitting different communication methods to coexist (such
as the Nexus-based MPICH [13]) and the development of covering tools to communicate among
processes running under different uniprotocol MPI implementations (such as PVMPI [14] using PVM
to do it) are typical up-to-date research efforts in this direction. They lead to more efficient and
portable MPI implementations.




At the same time, MPI has two disadvantages. The first one is a low level of its parallel primitives. It
is tedious and error-prone to write in MPI really complex and useful parallel applications. Note, that
this disadvantage is not due to the MPI design (which is really excellent), but due to the message-
passing paradigm.

The second disadvantage is that MPI (both MPI 1.1 and upcoming MPI-2) does not support efficient
portability. Efficient portability means that a parallel application, running efficiently on a particular
heterogeneous network, will run efficiently after porting to other heterogeneous network. In other
words, an efficiently portable application can adapt to peculiarities of underlying heterogeneous
network (the number and performances of processors, bandwidths and speeds of links among them).
Of course, because of low level of MPI, one may write a special porting system to provide efficient
portability of his application, but such a system is usually too complicated, and the necessity of its
development can frighten off most of normal users.

Another research direction in run-time systems supporting programming for heterogeneous networks
addresses load balancing. There are a number of researchers working on run-time systems supporting
migration of processes and/or data among processor nodes of executing heterogeneous network to
balance their loads [15-16]. Such systems monitor loads of processor nodes and redistribute resources
if the loads are not balanced. Although such systems allow to adapt running parallel applications to
underlying heterogeneous networks, they do not solve the problem of efficient portability. The point is
that load balancing cannot provide the best execution time of a parallel applications, which depends on
the number of processes, the volume of computations to perform by each of the processes, initial
distribution of processes over the heterogeneous network, monitoring overheads and so on. Since such
a system knows nothing specific about a running application and is hidden from the user (who even
may not know about it), the system will provide the best execution time only under very strong
restrictions on the application and the underlying hardware.

So, traditional tools do not support efficiently portable modular parallel programming heterogeneous
networks of computers.

2. Outline of main resuits

We have designed a programming language named mpC and aimed at efficiently portable modular
parallel programming. _

A prototype mpC programming environment has been designed and implemented. In October 1996,
an alpha version of the environment was put for public access in Internet at the address
http://www.ispras.ru/~mpc. Currently, version 1.2.1 of the mpC system is released. It runs on networks
of diverse workstations and PCs running Solaris, SunOS 4.1.3, HP-UX, Linux, OSF1 and using LAM
MPI [17] or MPICH [18] as a communication platform. There are more than 200 mpC users around the
world and more than 2300 visits at the mpC page since February 1997.

The mpC language and its supportive environment have been used or plan to be used as a basis for
courses on parallel and distributed computing in several universities in Russia and USA.

Basic techniques of the writing of efficiently-portable mpC applications have been developed. A
number of mpC applications solving some typical problems have been written and compared to their
counterparts developed with traditional tools (MPI, HPF, ScaLAPACK, etc.). Numerous experiments
showed that the mpC applications run on heterogeneous networks of computers essentially faster than
their traditional counterparts. ’

A number of papers on mpC has been published [19-23]. Additionally, detailed documentation on
mpC (including language specification, installation guide, user's guide, related publications, sample
mpC applications, etc.) as well as the corresponding free software are available at the mpC homepage
(http://www_.ispras.ru/~mpc).

By now, mpC remains a unique tool (we do not know other commercial or research programming
environments supporting efficient portability).

Currently, the mpC programming environment includes a compiler, a run-time support system, a
library, and a command-line user interface. The compiler translates a source mpC program ‘into ANSI
C code with calls to functions of the run-time support system. The run-time support system manages
the computing space which consists of a number of processes running over underlying distributed
memory machine as well as provides communications. It has a precisely specified interface and
encapsulates a particular communication package (currently, a subset of MPI). It ensures platform-
independence of the rest of system components. The library consists of a number of functions which
support debugging mpC programs as well as provide some low-level efficient facilities. The command-




line user interface consists of a number of commands supporting the creation of a virtual distributed
memory machine and the execution of mpC programs on the machine. While creating the machine, its
topology is detected by a topology detector running a special benchmark and saved in a file used by the
run-time support system.

The mpC language is an ANSI C superset allowing the user to specify topology of and to define so-
called network objects (in particular, in run time) as well as to distribute data and computations over
the network objects. The mpC programming environment uses this information to map (dynamically)
the mpC network objects to any underlying heterogeneous network in such a way to ensure the most
efficient running of the application on the network. For example, the user can write in mpC the
following
/*1*/ nettype HeteroNet(n, pln]) ({

/*2%/ coord I=n;

/*3%/ node { I>=0: p{I]l; };

/*ax/ )i

J*5%/ ...

/*6%/ {

/*7*/ repl int m, qN];

/*8%*/ ... /* Computing m and q[0l,...,q(m-1] */
/*9%/ {

/*10*/ net HeteroNet (m,q) r;

/*11%/ ..

/*12%/ } .

/*13*/ )

to define automatic network object r consisting of m virtual processors, the relative performance of the
i-th virtual processor being characterized by the value of g [1].

Here, lines 1-4 declare network topology HeteroNet parametrized with integer parameter n and
vector parameter p consisting of n integers. Line 2 is a coordinate declaration declaring the coordinate
system to which virtual processors are related. It introduces coordinate variable I ranging from 0 to
n-1. Line 3 is a node declaration. It relates virtual processors to the coordinate system and declares
their types and performances. It stands for the predicate for all I<n if I>=0 then a virtual processor,
whose relative performance is specified by the value of p[I], is related to the point with the
coordinate [I] .

Line 7 defines variable m and array ¢ both replicated over the entire computing space (any network
object is a region of the entire computing space). By definition, data object distributed over a region of
the computing space comprises a set of components of any one type so that each virtual processor of
the region holds one component. By definition, a distributed data object is replicated if all its
components is equal to each other.

Conceptually, creation of a new network object is initiated by a virtual processor of a network object
already created. This processor is called a parent of the created network object. The parent belongs to
the created network object. In our case, the parent of network object r is the so-called virtual host-
processor - the only virtual processor defined from the beginning of program execution till program
termination.

Suppose we to model the evolution of m groups of bodies under the influence of Newtonian
gravitational attraction, and our parallel application uses a virtual processor to update a single group.
Suppose also g[i] to be equal to the square of the number of bodies in the i-th group. Then, line 10
defines network object r, executing most of computations and communications, in such a way, that it
consists of m virtual processors, and the relative performance of each processor is characterized by the
volume of computations to update the group which it computes. So, the more powerful is the virtual
processor, the larger group of bodies it computes. The mpC programming environment bases on this
information as well as on the information about the topology of the underlying heterogeneous network
to map the virtual processors into the processes, running on this heterogeneous network and
representing the entire computing space, in the most appropriate way. Since it does it in run time, the
user does not need to recompile the mpC code to port it to another heterogeneous network.

Additionally, to write an application more adaptable to the underlying hardware, one can use calls to
the following library functions:

int MPC_Processors_static_info(int* num_of processors, double** performances);
int MPC_Links_static_info(MPC_Links ** links);
A call to the first function returns the number of actual processors and their relative performances. A

call to the second one returns information about the network structure and bandwidths and speeds of




communication links. Suppose we to multiply 2 dense 's'quére kxk matrices X and Y, and our parallel
application uses a number of virtual processors, each of which computes a number of rows of the
resulting matrix Z. Finally, let we use in line 8 the following code

repl double *powers;\

repl MPC_Links *links;\

external repl k;\
MPC_Processors_static_info (&m, &powers) ;\
MPC_Links_static_info(&links);\
Partition(&m, powers, links, q, k);

to compute m, g [0],...,g [m-1]. Based on the number and the performances of actual processors as
well as network characteristics, the user-defined function Partition computes how many actual
processors will take part in multiplying the matrices and how many rows of the resulting matrix will be
computed by each of these actual processors (note, that the number of actual processors participating in
the matrix multiplication may be less than the total number of actual processors, because
communication overheads may exceed parallelization speedup). So, after the call to this function m
will hold the number of participating actual processors and q([i] will hold the number of rows
computed by i-th actual processor. Network object r, which executes the rest of computations and
communications, is defined in such a way, that the more powerful the virtual processor, the greater
number of rows it computes. The mpC environment will ensure the optimal mapping of the virtual
processors constituting r into a set of processes constituting the entire computing space. So, not more
than one process from processes running on each of actual processors will be involved in
multiplication of matrices, and the more powerful the actual processor, the greater number of rows its
process will compute.

3. Latest achievements

3.1. Language
A simplified form of node declarator was introduced. Note, that the node declarator
node { I>=0: p[Il; };

used in the above mpC fragment is the simplified form of the node declarator
node { I>=0: fast*p[I] scalar; };

A relation declaration to specify relations between subnetworks of the same network was introduced.
The partial order "to be a subnetwork of" is defined on a set of subnetworks of the same network. The
compiler needs the relation for correct translation of many expressions. Therefore, the partial order
should be explicitly specified in mpC program. There was only one way to do it. Namely, the relation
could be specified with a subnetwork declaration, similar to the declaration of subnetwork sr3 in the

following fragment
repl [*]af6]={10, 20, 30, 40, S50, 60};
net HeteroNet (6, a) x6;
subnet [r6:I<5] sr5;
subnet [srS5:I<3] sr3;
subnet [r6:I<4] sr4;

The declaration specifies that sx3 is a subnetwork of sr5. At the same time, although, in fact, sr4 is
a subnetwork of srs, the compiler will treat them as incomparable ones. Now, to inform the compiler

about this fact, one can use the relation declaration
relation sr4<srs;

in the corresponding block.

3.2. Run-time support system

The run-time support system was ported to SunOS 4.1.3, OSF1 and Windows 95. In addition to
LAM MPI and MPICH, it was tested with HP MPI - an implementation of MPI from Hewlett-Packard.

Algorithms of managing processes were optimized to lower communication overheads.

The model of a heterogeneous network of computers and the algorithm of load balancing were
improved.

More debugging facilities were added.




A number of new functions to get the information about executing environment were provided. In
particular, they include the function MPC_Total_nodes returning the total number of virtual
processors constituting the computing space as well as the function MPC_Links_static_info
returning information about the network structure and bandwidths and speeds of communication links
of the underlying hardware.

3.3. Compiler

The compiler was ported to SunOS 4.1.3, OSF1 and Wmdows 95.

Now, the compiler supports old-style function definitions.

Now, the compiler supports an incremental mode of compiling.

Algorithms of translating network definitions were simplified to improve reliability as well as
optimized to lower communication overheads (see Appendix A for more details).

3.4. Command-line user interface

The command-line user interface was simplified. It was reimplemented to run on top of both LAM
MPI and MPICH (see Appendix B for more details).
In addition to Solaris, HP-UX and Linux, it was ported to SunOS 4.1.3 and OSF1.

3.5. Applications’

Some efficiently-portable mpC applications solving linear algebra problems were developed,
implemented and compared to ScaLAPACK counterparts (see Appendix C for more details about
paralle! Cholesky factorization).

Some recommendations on the writing of efficiently-portable mpC applications solving irregular and
regular problems were formulated.

An irregular problem is characterized by some inherent coarse-grained or large-grained structure
implying quite deterministic decomposition of the whole program into a set of programs running in
parallel and interacting via message passing. As rule, there are essential differences in volumes of
computations and communications to perform by different programs. So, in mpC one can define a
network object, to execute the set of programs, and specify performances of its virtual processors and
lengths of its links in accordance with the different volumes of computations and communications, and
mpC programming environment will map the virtual processors onto underlying hardware in such a
way to ensure an efficient execution of the application.

Unlike an irregular problem, for a regular problem a decomposition of the whole program into a
large set of small equivalent programs, running in parallel and interacting via message passing, is the
most natural one. The main idea of efficient solving a regular problem is to reduce it to an irregular
problem the structure of which is determined by the topology of underlying hardware rather than the
topology of the problem. So, the whole program is decomposed into a set of programs each made of a
number of the small equivalent programs stuck together and running on a separate processor of the
underlying hardware. To do it in mpC, one can detect with a special library function the topology of
the underlying hardware, define a network object having the same topology and distribute
computations and communications in accordance with the topology to ensure efficient execution of the
program.
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Appendix A

A.1. Translation of network definitions

The mpC compiler translates a source mpC file into a target ANSI C file with calls to functions of the
run-time support system. It uses the SPMD model of target code, when all processes constituting the
target mpC program run identical code.

All processes constituting the target program are divided into 2 groups - a special process, called
dispatcher, playing the role of the manager of the computing space, and common processes, called
nodes, playing the role of virtual processors of the computing space. The dispatcher works as a server.
It receives requests from nodes and sends them commands-

In the target program, every network of the source mpC program is represented by a set of nodes
called region. At any time of the target program running, any node is either free or hired in one or
several regions. Hiring nodes in created regions and dismissing them are responsibility of the
dispatcher. The only exception is the pre-hired host-node representing the mpC pre-defined virtual
host-processor. Thus, just after initialization, the computing space is represented by the host and a set
of temporarily free (unemployed) nodes.




The main problem in managing processes is hiring them-to network regions and dismissing them. A
solution of this problem establishes the whole structure of the target code and forms requirements for
functions of the run-time support system.

To create a network region, its parent node computes, if necessary, parameters of the corresponding
network topology and sends a creation request to the dispatcher. The request contains full topological
information about the created region including the number of nodes and their relative performances.
On the other hand, the dispatcher keeps information about the topology of the target network of
computers including the number of actual processors, their relative performances and the mapping of
nodes onto the actual processors. Based on the topological information, the dispatcher selects the set of
free nodes, which is most appropriate to be hired in the created network region. (More detailed
description how dispatcher does it, may be found in [8].) After that, it sends to every free node a
message saying whether the node is hired in the created region or not.

To deallocate a network region, its parent node sends a message to the dispatcher. Note, that the
parent node leaves hired in the parent-network region of the deallocated region. The rest of members
of the deallocated network region become free and begin waiting for commands from the dispatcher.

Any node can detect its hired/free status. It is hired if a call to function MPC_Is_busy returns 1. If
such a call returns 0, the node is free.

Any node can detect if it is hired in some particular region or not. A region is accessed via its
descriptor. If the descriptor xd corresponds to the region, then a node belongs to the region if and only
if the function call MPC_Is member (&rd) returns 1. In this case, descriptor rd allows the node to
obtain comprehensive information about the region as well as identify itself in the region. The region
descriptor has type MPC_Net and holds the following data:

- topological data associated with the region, such as the number of coordinates, an integer array
containing actual topological arguments (if any) and the number of elements in this array, pointers to
the corresponding topological functions;

- the number of nodes in the region;
- the linear number of the node in the region;

- an integer array containing coordinates of the given node in the corresponding network;

- some additional and /or redundant information aimed at optimization of computations and
communications.

When a free node is hired in a network region, the dispatcher must let the node know, in which
region it is hired, that is, must specify the descriptor of that region. The simplest way - to pass the
pointer to the region descriptor from the parent node through the dispatcher to the free node, is
senseless for distributed memory systems not having common address space. Therefore, in addition to
the region descriptor, something else is needed to identify the created region in a unique fashion. The
additional identifier must have the same value on both the parent and the free node and be passable
from the parent node through the dispatcher to the free node.

In a source mpC program, a network is denoted by its name, being an ordinary identifier and not
having to have file scope. Therefore, a network name can not serve as a unique network identifier even
within a file. One could enumerate all networks declared in the file and use the number of a network as
an identifier unique within the file. However, such an identifier being unique within a file can not be
used as a unique identifier within the whole program that may consist of several files. Nevertheless,
one can use it without collisions when creating network regions, if during network-region creation all
participating nodes execute the target code located in the same file. Our compiler just enumerates
networks defined in a file and uses their numbers as network identifiers in target code when creating
the corresponding network regions. It does ensure that during the creation of a network region all
involved nodes execute the target code located in the same file.

Creating a network region involves its parent node, all free nodes and the dispatcher. The parent
node calls to function MPC_Net_Create declared in the header file mpC.h as follows:

int MPC_Net_ create (MPC_Name name, MPC_Net* net);
where name contains the unique number of the created-network in the file, and net pojnts to the
corresponding region descriptor. The function computes all topological information and sends a
creation request to the dispatcher.

Meantime, free nodes are waiting for commands from the dispatcher at so-called waiting point

calling the function MPC_Of fer declared in mpC.h as follows:
int MPC_Offer (const MPC_Name* names, MPC_Net** nets_voted, int voted_count);




where names is an array of numbers of all networks the creation of which are expected at the waiting
point, nets_voted points to an array of pointers to descriptors of the regions the creation of which
are expected at the waiting point, voted_count contains the number of elements in array names.

The correspondence between the network numbers and region descriptors is established in the
following way. If a free node receives from the dispatcher a message saying that it is hired in a
network the number of which is equal to names [i], then the node is hired in the network region the
descriptor of which is pointed by nets_voted[il. ‘

A free node leaves the waiting function MPC_Of fer either after it becomes hired in a network
region or after the dispatcher sends to all free nodes the command to leave the current waiting point.

A.2. Structure of target code for mpC block

In general, target code for an mpC block with network definitions has two waiting points. In the first,
called creating waiting point, free nodes are waiting for commands on region creations. In the second,
called deallocating waiting point, they are waiting for commands on region deallocations. In general,
free nodes participate not only in creation/deallocation of regions for networks defined in the mpC
block, but also in overall computations (that is, in computations distributed over the entire computing
space) and/or in creation/deallocation of regions for networks defined in nested blocks. Let us call the
first mpC statement in the block involving all free nodes in its execution a waiting-point break
statement.

Then, in the most general case, the compiler generates target code of the following structure:

{

declarations

{

if (IMPC_Is_busy())
target code executed by free nodes to create regions for
networks defined in source mpC block

}
if (MPC_Is busy()) {

target code executed by hired nodes to create regions for

networks defined in source mpC block

and

target code for mpC statements before waiting-point break statement

}

epilogue of waiting point

target code for mpC statements starting from waiting-point break statement

{

target code executed by hired nodes to deallocate regions for
networks defined in source mpC block

label of deallocating waiting point:

i£ (IMPC_Is_busy(}) {
target code executed by free nodes to deallocate regions
for networks defined in source mpC block

}

epilogue of waiting point
}
}

If the source mpC block does not contain a waiting-point break statement (that is, overall statements
and nested blocks with network definitions or overall statements), then creating and deallocating
waiting points can be merged. Let us call such a waiting point shared waiting point. Target code for
the mpC block with a shared waiting point looks as follows: -

{

declarations

label of shared waiting point:

if (IMPC_Is busy()) {
target code executed by free nodes to create and deallocate
regions for networks defined in source mpC block

}




if (MPC_Is busy()) { -
target code executed by hired nodes to create and deallocate
regions for networks defined in source mpC block
and
target code for statements of source mpC block

}

epilogue of waiting point

}

To ensure that during the creation of a network region all involved nodes execute target code

located in the same file, the compiler put a global barrier into the epilogue of waiting point.

The coordinated arrival of nodes to the epilogue of waiting point is ensured by the following
scenario:

- the host makes sure that all other hired nodes, which might send a creation/deallocation request
expected in the waiting point, have already reached the epilogue;

- after that, the host sends a message, saying that any creation/deallocation request expected in the
waiting point will not appear yet, to the dispatcher;

- after receiving the message the dispatcher sends all free nodes a command ordering to leave the
waiting point;

- after receiving the command each free node leaves the waiting function and reach the epilogue.

A.3. Process management in details

To introduce the process management in more details, let us consider the following mpC file:
/*1 */ nettype T(m) { coord I=m; };
/*2 */ void [*]f(int [host] hn) {
/*3 */ net T(2) n;
/*4 */ repl in;
/*5 */ in=hn;

/*6 */ {

/*7 */ net T(in) [n] nn;

/*8 */ .../* declarations*/

/*9 */ .../*statements without a waiting-point break statement*/
/*10%/ }

/*11*/ '}

Line 1 introduces topology T with parameter m. It describes networks consisting of m virtual
processors with the integer coordinate variable I ranging from 0 to m-1.

Line 3 defines network n consisting of two virtual processors.

Line 4 defines integer variable in replicated over the entire computing space.

Line 5 broadcasts the value of variable hn from the virtual host-processor over the entire computing
space. The statement is executed by the entire computing space. Therefore, it is a waiting-point break
statement for the function body.

Line 7 defines network nn. The network nn is a distributed network. In general, mpC allows to
define not only a single network but also a set of single networks by means of defining so-called
distributed network. A definition of a distributed network specifies the type of the network and its
parent network. Such a definition may be considered as a distributed over the parent network definition
of a single network of the specified type. The parent network of a distributed network can also be
distributed. But in any case, a distributed network is a set of single networks of the same type. The
number of single networks in this set is equal to the number of virtual processors in the parent network
each of the virtual processors of the parent network being a parent of a single network of the set.

There are not facilities to specify a single network belonging to a distributed network in mpC.
Therefore, whenever one specifies a subnetwork of a distributed network, he means a set of
subnetworks of the single networks constituting the distributed network. Similarly, if one specifies a
single processor of a distributed network, he means a set of single processors of the single networks
constituting the distributed network. Any computation.on a distributed network is divided into
independent computations on the single networks constituting the distributed network. g

So, network nn distributed over its parent network n divides into a set of two single networks the
type of which is defined completely only in run time.

There will be all three kinds of waiting points in target code for function £. The function body,
where network n is defined, contains a waiting-point break statement. Therefore, target code for the
function body will contain both creating and deallocating waiting points. The nested block (lines 6-12),




where network nn is defined, does not contain a waiting-pbint break statement. Therefore, target code
for the nested block will contain a shared waiting point.

The following target code
/*1 */ void £() {
/*2 */ int MPC_Net_n_6_coord([1];
/*3 */ MPC_Parameters MPC_Net_n_6_params[1]={2};
/*a */ MPC_Net MPC Net_n 6={.../* initialization list */}i

/*5 */ int in;

/*6 */ {

/*7 */ if (!MPC_Is_busy()) {

/*8 */ MPC_Name MPC_names[1]={6};

/*9 */ MPC_Net* MPC_nets[1];

/*10%/ MPC_nets [0] =&MPC_Net_n_6;

/*11*/ MPC_Offer (MPC_names, MPC_nets,1);
/*12*/

/*13*/ if (MPC_Is busy()) {

/*1a*/ if (MPC_Is_member (&MPC_Net_host)) {
/*15*/ MPC_Net_create(6, &MPC_Net_n_6);
/*16%/ }

/*17*/ if (MPC_Is_host()) {

/*18*/ MPC_Host_out () ;

/*19*/ }

/*20%/ }

/*21*/ MPC_Waiting point_end();

/*22%/ )

/*23*/ /* target code for in=ih */

/*24%/ {

/*25%/ int MPC_Net_nn_7_coord[1];

/*26*/ MPC_Parameters MPC_Net_nn_7_params[1];
/*27*/ MPC_Net MPC_Net nn_7={.../*initialization list*/};
/*28%/ /*target code for declarations of the source nested block*/
/*29%/ {

/*30%/ MPC_waiting point_2:

/*31%/ if ({MPC_Is busy()) {

/*32%/ MPC_Name MPC_names(1]=(7};

/*33%/ MPC_Net* MPC_nets[1];

/*34*/ MPC_nets {0] =&MPC_Net_nn_7;

/*35%/ MPC_Offer (MPC_names,MPC_nets,1);
/*36%/ }

/*37%/ if (MPC_Is_busy()) {

/*38%/ if (MPC_Is_member (&MPC_Net_n 6)) {
/*39%/ MPC_Net _nn_7.count=1;

/*40%/ MPC_Net_nn_7.params=MPC_Net_nn_7_params;
/*41*/ {

/*a2%/ MPC_Net_nn_7_params [0] =in;
/*43%/ }

/*a4a*/ MPC_Net_create(7,&MPC_Net_nn_7);
/*as5*/ )

/*a6%/ /*target code for statements of the source nested block*/
/*a7*/ if (MPC_Is_member (&MPC_Net_nn_7)) {
/*a8*/ MPC_Net_free (&MPC_Net nn 7);
/*a9%/ if (IMPC_Is_busy())

/*50*/ goto MPC_waiting point_2;
/*51%/ } ’
/*52%/ if (MPC_Is_member (&MPC Net n 6)) {
/*53%/ MPC_Local_barrier (&MPC_Net n_6);
/*54*/

/*55%/ if (MPC_Is_host()) {

/*56%*/ MPC_Host_out () ;

/*57*/ }

/*58%/ }

/*59%/ MPC_Waiting point_end();

/*60%/ } - -
/*61%/ if (MPC_Is member (&MPC_Net_n_6)) {
/*62%/ MPC_Net_free (&MPC_Net_n_6);

/*63*/ if ({MPC_Is_busy())

/*64*/ goto MPC_reconfig point_1;

/*65*/ )

/*66%*/ if (MPC_Is_host()) {

/*67%/ MPC_Host_out () ;

/*68%/ }




/*69*/ MPC_reconfig_point_1: ol

/*70%/ if (IMPC_Is busy()) {
/*71%/ MPC_Of fer (NULL, NULL, 0) ;
/*72%/ }

/*73%/ MPC_Waiting_point_end();
/*74%/ }

/*75%/ }

is generated by the mpC compiler for the above mpC function f£. Lines 1-23 and lines 61-75 are
generated for the function body, and lines 24-51 are generated for the nested block.

Lines 2-22 of the target code are related to the creating waiting point. The network n has obtained
number 6 as an identifier unique in the file, and the corresponding network region is accessible via
descriptor MPC_Net_n_6 (line 4). Line 2 defines the one-element axrray MPC_Net_n_6_coord
to hold the coordinates of nodes of the region. Line 3 defines and initializes the one-element array
MPC_Net_n_6_params in such a way that its only element holds integer value 2 as an argument of
topology T establishing the type of network n (namely, the network type T (2) ). Line 4 defines the
region descriptor MPC_Net n_6 and initializes all such its members, values of which can be
computed in compile time.

The target code in lines 8-11 is executed by all free nodes to create the region represented the
network n. Line 8 defines and initializes the one-element array MPC_names containing the number of
the network the creation of which is expected at the first waiting point. Line 9 defines the one-element
array MPC_nets to hold a pointer to the region descriptor the creation of which is expected at the first
waiting point, and line 10 assigns the proper value to its only element. Line 11 calls to the waiting
function MPC_Offer. A free node leaves the function either after it becomes hired in region
MPC_Net_n_6, or after the dispatcher sends to all free nodes the command to leave this waiting
point.

The target code in lines 14-19 is executed by all hired nodes to create the region for network n and to
reach coordinately the epilogue of the creating waiting point.

Lines 14-16 call to function MPC_Net_create on the host to form the corresponding creation
request and to send it to the dispatcher. The host is accessible via descriptor MPC_Net host. Any
node is detect itself as the host if the function call MPC_Is member (&MPC_Net_host) or the
function call MPC_Is_host () return 1 on the node.

Lines 17-19 call to function MPC_Host_out on the host to send the dispatcher a message saying
that all free nodes must leave the waiting point. Since in our example the host is the only node, that can
send a creation request expected in the waiting point, it knows that all creation requests expected in the
waiting point have already been sent, and it may send the message to the dispatcher.

The statement in line 21 calls to function MPC_Waiting point_end. It is an epilogue of the first
waiting point. The call provides a global barrier synchronization and does not let any node to continue
until all nodes constituting the entire computing space reach it.

The target code for the nested block (lines 24-60) is related to the shared waiting point. The network
nn has obtained number 7 as an unique identifier in the file, and the corresponding network region is
accessible via descriptor MPC_Net_nn_7 (line 27).

Lines 25 defines one-element array MPC_Net_nn_7_coord to hold the coordinates of nodes of
the region. Line 26 defines the one-element array MPC_Net_nn_7_params to hold an argument of
topology T establishing the type of network nn. Line 27 defines the region descriptor
MPC_Net_nn_7 and initializes all such its members, values of which can be computed in compile
time.

The target code in lines 32-35 is similar to the target code in lines 8-11 and executed by all free
nodes to create the region represented the network nn.

The target code in lines 38-58 is executed by all hired nodes to create and deallocate the region for
network nn, to execute statements of the source mpC nested block, and to reach coordinately the
epilogue of the shared waiting point. ) g

Lines 39-44 are executed by two nodes constituting region MPC_Net_nn_6 in parallel to create two
regions representing the distributed network nn. Lines 39-43 compute some attributes of these regions,
allowing to establish the type of network nn, and store them in the corresponding members of the
region descriptor MPC_Net_nn_7. :

Line 44 calls to function MPC_Net_create to form two corresponding creation requests and to
send them to the dispatcher.




Lines 48-50 are executed on the regions representing network nn to deallocate them. Line 48 calls to
function MPC_Net_free. The function provides a local barrier synchronization over the deallocated
regions. After all nodes constituting these regions reach the local barrier, each of two nodes
constituting their parent region (that is, region MPC_Net_nn_6) send a message to the dispatcher.
These two nodes remain to be hired in region MPC_Net_nn_6. Meantime other members of the
distributed network region become free and jump to the label MPC_waiting point_2 of the
shared waiting point (line 50). They begin executing the free-node code (lines 32-35) and, eventually,
join other free nodes calling the waiting function in line 35.

Lines 52-57 ensure that all nodes reach the epilogue of the shared waiting pomt coordinately. Since
the host is not the only node that can send a request expected in the waiting point, it can not pass over
the local barrier in line 53 and call to function MPC_Host_out in line 56 to send the dispatcher a
message saying that all free nodes must leave the waiting point, until all other nodes able to send a
creation/deallocation request reach the local barrier.

As a result, all nodes call to the epilogue function MPC_Waiting_ point_end (line 59)
coordinately.

The rest of the target code generated for the function body (lines 61-74) is related to the deallocating
waiting point.

Lines 61-68 are executed by hired nodes to deallocate the region representing the network n and to
ensure that all nodes reach the epilogue of the deallocating waiting point coordinately. The node, that
becomes free after the call to function MPC_Net_free in line 62, jumps to the label
MPC_reconfig_point_1 of the deallocation waiting point (line 64) and calls to the waiting
function (line 71). Since the host is the only node that can send a deallocation request expected in the
waiting point, it does not need to synchronize its work with some other hired nodes and can call to the
function MPC_Host_out to send the dispatcher a message saying that free nodes must leave the
deallocation waiting point.

Lines 70-72 ensure that all free nodes will receive in time the command from- the dispatcher to leave
the waiting point and will reach the epilogue function (line 73) coordinately with the hired nodes.

Appendix B

B.1. Definition of terms

The following terms are used in this document:

Computing space (a language term) - a set of typed virtual processors of different
performances connected with links of different bandwidths;

Distributed memory machine (an implementation term) - any computing system running MPI
(for example, cluster of workstations, heterogeneous network of workstations and/or PCs, a specialized
parallel computer, or everything taken together);

Virtual parallel machine (an implementation term) - a set of processes representing virtual
processors of the computing space and running over distributed memory machine.

Host workstation (an implementation term) - any workstation or PC that may be uséd as a
working place of the user. It is intended that the user may start running mpC -applications only from
host workstations.

B.2. Outline of the mpC programming environment

Currently, the mpC programming environment includes a compiler, a run-time support system
(RTS), a library, and a command-line user interface. All these components are written in ANSI C.

The compiler translates an mpC program into a ANSI Cprogram with calls to functions of RTS. The
compilation unit is a source mpC file. The compiler uses optionally either the SPMD model of target
code, when all processes constituting a target message-passing program run the identical code, or a
quasi-SPMD model, when it translates the source mpC file into 2 distinct target files: the first for the
virtual host-processor and the second for the rest of virtual processors.




RTS manages the computing space and provides any fiecessary communications. RTS encapsulates a
particular communication package (currently, a small subset of MPI). It ensures platform-
independence of the rest of compiler components. ’

The library consists of a number of functions which provide low-level efficient facilities as well as
support debugging mpC programs.

The user interface consists of a number of programs supporting the creation of a virtual parallel
machine and monitoring the execution of mpC applications on the machine. While creating the
machine, its topology is detected by a topology detector and saved in a file used by RTS. The topology
detector executes a special benchmark to detect performances of workstations constituting the target
distributed memory machines, the number of processors in each of these workstations, as well as
bandwidths of links connecting the workstations (optionally).

All processes constituting the target program are divided into 2 groups - the special process named
dispatcher playing the role of the computing space manager, and general processes named nodes
playing the role of virtual processors of the computing space. The dispatcher works as a server
accepting requests from virtual processors. The dispatcher does not belong to the computing space.

In the target program, every network or subnetwork of the source mpC program is represented by a
set of nodes called region. So, at any time of the target program running, any node is either free or
hired in one or several regions. Hiring nodes in created regions and dismissing them is the
responsibility of the dispatcher. The only exception is the pre-hired host-node representing the mpC
pre-defined virtual hostsprocessor. Thus, just after initialization, the computing space is represented by
the host and a set of temporarily free (unemployed) nodes.

If a region represents a network, creation of the region involves the parent node, the dispatcher and
all free nodes. The parent node sends creation request containing the necessary information about the
network topology to the dispatcher. Based on this information and the information about the topology
of the virtual parallel machine, the dispatcher selects the most appropriate set of free nodes. After that,
it sends to every free node a message saying whether the node is hired in the created region or not.
Deallocation of network region involves all its members as well as the set of free nodes and the
dispatcher.

If the region represents a subnetwork, its creation involves only members of the enclosing region.
Deallocation of subnetwork region involves only its members.

The dispatcher keeps a queue of creation requests that cannot be satisfied immediately but can be
served in the future. It implements some strategy of serving the requests aimed at minimization of the
probability of occurring a deadlock. The dispatcher detects such a situation when the sum of the
number of free nodes and the number of such hired nodes that could be released is less than the
minimum number of free nodes required by a request in the queue. In this case, it terminates the
program abnormally.

B.3. Supported systems

We tried to write all the components of the mpC programming environment in such a way to avoid
any problem with its installation on any Unix system having C compiler supporting ANSI C. We have
checked it for the following platforms:

Sun workstations running Solaris 2.4/2.5, SunOS 4.1.3 with gcc versions 2.6.3, 2.7.0, 2.7.2
and SPARCworks Professional C 3.01; .

HP9000 workstations running HP-UX 9.07 with gcc version 2.7.2 and ¢89;

DEC Alpha workstations running OSF1 with gcc version 2.7.2;

PCs running Lunix 4.0 with gcc version 2.7.2.

We tried to write the mpC compiler in such a way to avoid any problem with compilation of
generated code on any Unix system having C compiler supporting ANSI C. We have checked it for the
platforms listed above. )

We tried to write RTS in such a way to ensure its correct work for any implementation of MPI
supporting full MPI 1.1 standard as an underlying comiinication platform. We have checked it for
LAM MPI versions 5.2, 6.0 (for the platforms listed above), for MPICH version 1.0.13 (for Sun
workstations running Solaris and HP9000 workstations running HP-UX 9.07) and for HP MPI (for
DEC Alpha workstations running OSF1).

The current version of the command-line user interface is written in such a way to work correctly for
two implementations of MPI - LAM and MPICH. We have checked it for LAM versions 6.0 (for the




platforms listed above) and for MPICH version 1.0.13 ¢(for Sun workstations running Solaris and
HP9000 workstations running HP-UX 9.07).

B.4. mpC compiler
To call the mpC compiler one should type:
mpce [options] filename

mpcc processes an input file through one or more of tree stages: preprocessing, analysis, and
generating one or two C files. For preprocessing we use a standard preprocessor and recommend to use
GNU cpp. Only one input file may be processed at once. The suffix .mpc is used for mpC source
files, and the suffix .c is used for processed mpC files. mpcc puts output C files into the current
directory.

B.4.1. Options

All options must be separated. For example, -hetmacro is quite different from -het -macro.
All options different from described bellow are considered as options of the preprocessor.

-E
Stop after the preprocessing stage; do not run the compiler proper. The output is preprocessed source
code, which is sent to standard output.

-analyse
Compiler provides parsing and semantical analysis. C files will not be generated.

-kmode

Selects one of four parser modes. mode may be SHORT, ANSI, LONG, and ALL. By default the
SHORT mode is used. This mode allows to use only the short form of mpC keywords. The ANSI mode
allows to use only ANSI C keywords. The LONG mode allows to use only the full form of mpC
keywords. The ALL mode allows to use both forms of mpC keywords. For example, net and
mpc_net are identifiers in the ANSI mode and mpC keywords in the ALL mode. net is an identifier
in the LONG mode and an mpC keyword in the SHORT mode. Finally, mpc_net is an identifier in
the SHORT mode and an mpC keyword in the LONG mode. Presence of these modes supports the
compatibility with previously written C code.

-macro
Forbids to use some macros in generated C files. The macros contain parameterized code standing for
long pieces of code. Code with macros is shorter but may be less undestandable.

-out
Directs output of mpcc to standard output instead of C file.

-het

Makes compiler produce two output C files. By default, for source mpC file name.mpc- mpcc
produces one output C file name.c. If -het is typed, then mpcc will produce two output files:
name_host . c containing code for the virtual host-processor and name_node. c containing code
for the rest of virtual processors. This option allows to isolate code with input/output operations to a
single processor.

B.4.1. Pragmas
A #pragma directive of the form ~ ’ -
#pragma keywords mode:
is supported by mpcc. This pragma has the same affect on mpC keywords as option -k described
above and allows one to use the same header files in C and mpC sources.




B.5. How to start up -

By now, we dealt with local networks of workstations running UNIX (including PCs running
LINUX) as a DMM. Any workstation that may be used as a working place of the user is called a host
workstation. It is intended that the user may start running mpC applications only from host
workstations.

To start working with the mpC environment, the user must have it installed on each of workstations
constituting his DMM.

Then the user should become an authorised user with the same name on each of workstations
constituting the DMM.

Then the user should make sure that on each of these workstations in his home directory file
.rhosts exists and contains names of all workstations constituting the DMM.

Then on each of these workstations the user should modify corresponding files (for example,
.ashrc if he uses C shell) in his home directory to determine environmental variables WHICHMPI,
MPIDIR, MPCHOME, MPCTOPO, and MPCLOAD of his shell.

Notes:
Sometimes one needs modify different files for local and remote invocation of shell. For

example, for PC running Linux 4.0 the user should modify files .bashrc and bash_profile ifhe
uses Bourne shell. .

When using LAM, it may be needed to determine environmental variable TROLLIUSHOME
settmg it to the same value as MPIDIR.

When using MPICH, environmental variable MPCHOME must be set to the same value on all
workstations constituting the DMM. To ensure it, the user may need to use the Unix 1n command to
make necessary hard or soft links.

When using MPICH, environmental variable MPCLOAD must be set to the same value on all
workstations constituting the DMM. To ensure it, the user may need to use the Unix 1n command to
make necessary hard or soft links.

When using MPICH, the user should make sure that he has write access to directory
$MPIDIR/bin/machines (equally, $MPIDIR/util/machines) on each of host workstations.

Then on each workstation the user should create his own directories SMPCTOPO, $MPCTOPO/log,
and SMPCLOAD. No two workstations or users can share these directories. The user should make sure
that he has write access to these directories.

Then on each workstation the user should modify corresponding files in his home directory to add
directories SMPIDIR/bin, $MPIDIR/lib, SMPCHOME/bin, SMPCHOME/lib and $SMPCLOAD to his
PATH. To avoid name conflicts, make directory SMPCLOAD first in the search path.

In addition, the user should add directories $MPIDIR/lib and $SMPCHOME/lib to his Id path (by
changing LD_LIBRARY_PATH for Solaris, LPATH for HP-UX and so on).

B.6. Virtual parallel machine

The next step is the description of the virtual parallel machine (VPM) which will execute mpC
applications. The description is provided by a manually-written VPM description file which should be
placed to the SMPCTOPO directory. The name of this file is just considered as a name of the described
VPM.

A VPM description file consists of lines of two kinds. Lines starting with symbol '#' are treated as
comments. All other lines should be of the following format:
name number of processes .
where name is the name of the corresponding workstation as it appears in the system /etc/hosts
file, and number of processes is the number of processes to run on the workstation. The host
workstation must go first in the file. The virtual host-processor will be mapped to a process running on
this workstation.

For example, the following file describes VPM which runs on DMM consisting of three workstations
(alpha, beta, and gamma), five processes running on each workstation, and the host workstation is
alpha:

# three workstation each running 5 processes

alpha 5
beta 5§




gamma S
The following example describes VPM with the same total number of the processes, but running on

the single workstation alpha. It may be useful for debugging mpC applications: -
# simple topology for debugging
alpha 15
The actual total number of running processes is greater then the number specified in the description
file. A process for the dispatcher is added automatically and runs on the host workstation. The virtual

host-processor is always placed on the host workstation.

B.7. Environmental variables

WHICHMPI

Currently, $WHICHMPI should be either LAM or MPICH dependent on the used MPI
implementation. WHICHMPI should be set to the proper value on host workstations.

MPIDIR

$MPIDIR is a directory where MPI has been installed. MPIDIR should be set to the proper value on
each workstation of DMM.

MPCHOME

$MPCHOME is a directory where the mpC programming environment has been installed.
MPCHOME should be set to the proper value on each workstation of DMM.

Subdirectory SMPCHOME/bin holds all executables and scripts of the mpC programming
environment.

Subdirectory SMPCHOME/h holds all specific mpC header files as well as header mpc . h containing
declarations of the mpC library and embedded functions.

Subdirectory SMPCHOME/Iib holds RTS object files mperts. o and mpctopo. o.

When using MPICH, the user should ensure MPCHOME to have the same value on all workstations
of the DMM. If mpC has been installed in different directories on different workstations, you can use
the Unix 1n command to make necessary hard or soft links and ensure the property.

MPCLOAD

$MPCLOAD is a directory for C files, object files, libraries and executables related to user's
applications. MPCLOAD should be set to a proper value on each workstation of DMM. No two
workstations or users can share the directory. The user should have write access to the directory.

When using MPICH, the user should ensure MPCLOAD to have the same value on all workstations
of the DMM. In particular, you can use the Unix In command to make necessary hard or soft links and
ensure the property. .

MPCTOPO

$MPCTOPO is a directory for VPM description files as well as all topological files produced by the
mpC programming environment. MPCTOPO should be set to a proper value on each workstation of
DMM. The mpC programming environment saves a file specifying the current VPM in subdirectory




$MPCTOPO/log. No two workstations or users can share these directories. The user should have write
access to these directories.

B.8. How to run mpC applications

To run an mpC application on a described virtual parallel machine, the user should proceed the
following steps:

- create the necessary VPM by the mpccreate command. Immediately after that, the VPM is
opened;

- if the necessary VPM has been created earlier, open it by the mpcopen command instead of its
creation;

-putall .c and .o user's files, necessary to produce executable file, into the SMPCLOAD directory
on the host workstation;

- broadcast all the files, necessary to produce executable, from the SMPCLOAD directory on the host
workstation to $MPCLOAD directories on other workstations constituting the DMM by the
mpcbcast command;

- create an executable file on each of workstations constituting the DMM by the mpcload command;

- run the executables by the mperun command.

Additionally,

- mpctouch displays status of the VPM and all its processes.

- mpcclean cleans VPM.
- mpcclose ends the work with the current VPM.

- mpcmach prints name of the current VPM.

mpccreate name

where name is the name of the VPM to create. The command uses the SMPCTOPO/name description
file. The command creates VPM, i.e. produces all necessary files for it.

In particular, the mpccreate command creates the SMPCTOPO/name.topo file, containing a
description of the topology of the created VPM and used by RTS in run time. Currently, the file
consists of pairs of lines of the form:

# <name_ of workstation>

s<number of processors> p<performance> n<number_of processes>

where <name_of workstations> is the name of the corresponding workstation as it appears in the
$MPCTOPO/name description file, <number of processors> is the number of physical
processors in the workstation, <performance> is an integer number characterizing the performance
of each of these physical processors and <number of processes> is the number of processes
running on the workstation. We recommend to check out the file after creation of the VPM, since the
detected topological characteristics can be rough enough if the background workload of the
corresponding DMM was essential and uneven during the work of the mpccreate command.

Once created, the VPM is accessible to be opened by mpcopen. Note that mpccreate is expensive

and executes a lot of computations and communications, so it may take a few minutes to create new
VPM. ,

mpcopen name

where name is the name of the VPM to open. The VPM must be created earlier. After opening, the
VPM is accessible for mpcbcast, mpcload, mpcrun, mpcclean, mpctouch,
mpcmach, and mpcclose.

mpcbecast [filel file2 ... ]

The command broadcasts files listed from directory SMPCLOAD on user's workstation to directory
$MPCLOAD on the rest of workstations constituting DMM. Only file names without paths must be

typed.

mpcload [-het] -o target [filel.c file2.c ... ]




[fileOl.0 file02.0 ... ] [fileFl.a filel2.a ... ]
[options to_all nodes] [-host] [options_to_host_onlyl]

The mpcload command produces executable target from in directory $MPCLOAD on each of
workstations constituting the DMM. Do not use a path in target.

The command produces the executable from .c, .o and .a files. The name of each of these files
either uses no path or uses the full path. The first case means that the file is searched in directory
$MPCLOAD. ‘

Option -het must be used if workstations participating in the VPM are not binary compatible. The

user may use the option even if all the workstations are binary compatible.
Option -host separates options necessary to all nodes and options necessary only for the virtual

host-processor. In addition, if this option appears then:
target for the virtual host-processor is produced from fully-named files and shortly-named files, whose
names are produced from names of shortly-named .c , .o and .a files as they are typed in the
command line by addition _host to the end of name;
target for other nodes is produced from fully-named files and shortly-named files, whose names are
produced from names of shortly-named .c, .o and .a files as the are typed in the command line by
addition _node to the end of name.

Options to_all nodes and options_to _host_only are may be any proper C compiler
options. Note, that if option -c is used, and hence target is an . o file, then option -host can not be
used.

mpcrun target [-- params]

The command runs mpC application target on the current VPM and passes parameters params to
this application. Do not use a path in target. :

mpctouch [-p]

The command checks status of the current VPM and displays it. The VPM may be ready or busy. If
option -p is typed then the status of all nodes is displayed. Currently, the command makes sense only
for LAM implementation.

mpcclose
Closes the current VPM.
mpcclean
The command cleans the current VPM and makes it ready to run new mpC application. The

command should be used in case of abnormal termination of the previous command or mpC
application. Currently, the command makes sense only for LAM implementation.

mpcmach
Prints the name of the current VPM.

mpcdel name

-~

e

where name is the name of a VPM. The command deletes the VPM (that is, deletes all system files
related to the VPM).




B.9. Debugging mpC applications recomhiendations

Debugging an mpC application isn't yet an easy task, but it is much simpler than debugging an
arbitrary MPI application, because of absence of nondeterminism.

There are at least three levels of debugging.

At the top level we suggest to include in mpC code calls to MPC_Global barrier() and
MPC_Barrier () to split program execution into small debuggable portions. It may be helpful to use
the MPC_Prinf () function to output node coordinates, and values of variables. But there are no
guarantee you to see all MPC_Printf messages, because some errors make message-passing
subsystem failed. It is also possible to use print£, but part of output done on remote computers will
be lost. However, we strongly recommend to start debugging using a single workstation as DMM. All
error messages include either position in the mpC source file or 0, 0, if the error takes place in the
dispatcher process.

The middle level includes including print£'s and barriers in C code generated by mpcec. It is a bit
more sophisticated than previous approach, because the user needs to understand the logic of the
generated C code and RTS kernel calls. If the user sets environmental variable MPCTRACEMAPFILE
to an absolute name of file, then in the corresponding file he will obtain a table, where each pair of
lines contains info about network allocation. Sign "+" stands for previously allocated process, sign "-"
stands for currently unemployed one, and "p" - for the parent node of the network. In the second line
user can see node ranks in the created network.

At the low level of debugging, the user may turn kernel tracing on and use MPI utilities such as
state and mpitask (LAM 6.0). To turn tracing on, the user needs to close the current virtual
parallel machine, then set the MPC_DEBUG environmental variable to 1 or 2 and reopen the machine.

To debug an application, which hangs without error messages, first call mpitask to find processes
which do not respond. In many cases they "die" due a simply "C error", such as an uninitialized
variable, dividing by zero and so on. The trace is useful for finding the point in the code where the
disaster occurs. When all processes are alive, mpitask shows operations, where the processes are
blocked.

B.10. Example of mpC session

Let the virtual parallel machine to run the application gal-buf .mpc has been already opened. To
produce two target C files - the first for the virtual host processor executing code that includes calls to
Xlib displaying data in the graphical form, and the second for the rest of virtual processors not
involved in graphical representing data, one can type:

mpcc -I/usr/openwin/include -het gal-buf.mpc

Note. Use the absolute application name if gal-buf.mpc is not in the current directory. Use
directory other then /usr/openwin/include if necessary (that is, use the directory where X
Windows system holds its include files on the host workstation).

The above command will produce files gal-buf_host.c and gal-buf node ¢ in the current
directory. To make these files accessible to the mpC programming environment, one should copy them

into the SMPCLOAD directory:
cp gal-buf host.c gal-buf node.c $MPCLOAD

To broadcast these files from the host workstation to all workstations constituting the distributed

memory machine, one should type:
mpcbecast gal-buf_host.c gal-buf_node.c

To produce executable gal-buf on each workstation of the distributed memory machine, one can
e: .
typmpcload ~het -o gal-buf gal-buf.c -1lm -host -L/usr/openwin/lib -1X
Note. Use a directory other then /usr/openwin/1ib if necessary (that is, use the directory where
X Windows system holds its libraries on the host workstation). Use an option other thep -1X if
necessary (that is, use the proper name for the X library; it may be -1X11 or something else).
Finally, to run the application, one can type:
mpcrun gal-buf -- input file
where file input_file contains input data for the application.
Note. Use the absolute name of the input file if it is placed in a directory other then the directory
which was a current directory when you open your virtual parallel machine.




Appendix C

C.1. Cholesky factorization in mpC and in ScaLAPACK

Here, we compare mpC and ScaLAPACK to demonstrate that unlike the traditional technology,
supported by ScaLAPACK and HPF, the technology, supported by mpC, allows one to develop
parallel applications efficiently portable among heterogeneous networks. Currently, ScaLAPACK is
one of the most advanced and famous free packages built on top of MPI. The design philosophy of the
ScaLAPACK library is typical (in particular, the same as that of HPF) and based on a homogeneous
multiprocessor with very fast communications among processor nodes as a model of the parallel
machine executing applications.

ScaLAPACK is a package for solving linear algebra problems on massively parallel, distributed
memory, concurrent computers. It has been designed as a message-passing version of LAPACK. It is
based on two additional packages - Basic Linear Algebra Communication Subprograms (BLACS), and
Parallel BLAS (PBLAS). The BLACS provides communication between processes on a logical two-
dimensional process grid for linear algebra purposes and encapsulates a particular communication
platform (in particular, MPI). The PBLAS is an extended subset of the BLAS for distributed memory
computers and operates on matrices distributed according to a block cyclic data distribution scheme. It
calls BLAS for computations and calls BLACS for communications.

For the comparison We selected a high-level ScaLAPACK routine implementing parallel Cholesky
factorization of a real symmetric positive definite matrix. Cholesky factorization is an extremely
important computation, arising in a variety of scientific and engineering applications. It is a well-
known challenge for efficient and scalable parallel implementation because of large volumes of
interprocessor communications.

Cholesky factorization factors an nxn, symmetric, positive-definite matrix A into the product of a
lower triangular matrix L and its transpose, i.e., A = LL”. One can partition the nxn matrices A, L and
LLT and write the system as

Ay Ay L, 0 L," Ly

= X

Ay Ay Ly Ly 0 L'
where blocks A, and L, are nb1* nbl, A,,, L,, are (n-nb1)*nbl, A,,, L,, are (n-nb1)*(n-nbl). L,, and
L,, is lower triangular, nbl1 is size of the first block. If to assume that L,,, the lower triangular Cholesky
factor of A,,, is known, one can rearrange the block equations

LZ] e AZI (Lll )

Ay € Ap-LyLy" =L,Lyt

The factorization can be done by recursively applying the step outlined above to the updated matrix
A,,". The parallel implementation of the corresponding ScaLAPACK routine is based on the above
scheme and a block cyclic distribution of the matrix A over a PxQ process grid with a block size of
nbxnb. The routine assumes that the lower (upper) triangular portion of A is stored in the lower (upper)
triangle of a two-dimensional array and that the computed elements of L overwrite the given elements
of A (here and henceforth when speaking of an array we mean a Fortran array, that is, that column
elements of an 2-D array are allocated contiguously).

Our mpC Cholesky factorization routine implements almost the same algorithm [18] that is
implemented by the ScaLAPACK one when P=1 and the lower triangular portion of A is used to
compute L. Namely, to compute above steps it involves the following operations:

process Pr, which has L,;, L,,, calls LAPACK function dpot£2 to compute Cholesky factor
L,, and sets a flag if A,, is not positive define; '

process Pr calls BLAS function dtrsm to compute Cholesky factor L,, if A, is positive
define; )

process Pr broadcasts the column panel, L,; and L,,, as well as the ﬂag to all other processes
and stops the computation if A,, is not positive define; ~ ”

all processes update matrix A,, in parallel, that involves calls to BLAS functions dsyrk and
dgemm by each process to update its local portions of the matrix A,,.

The main difference between the mpC and ScaLAPACK routines concludes in data distribution. In
fact, in our case the ScaLAPACK routine divides the matrix A into a number of column panels with
just the same width nb and distributes them cyclically over Q processes where Q, nb are input
parameters of the routine.




The mpC routine divides the matrix A into k coluriin panels with different widths nl, n2,..., nk,
where n1+n2+...+ nk=n, and distributes (in general, non-cyclic) them over Q processes. The routine
performs this partition in run time based on the following data:

the total number of actual processors and their performances both returned by the function
MPC_Processors_static_info;

the communication speed of an underlying network returned by the function
MPC_Links_static_info;

the size n of the matrix A.
The values of Q, k and nl, n2,..., nk as well as the mapping of the column panels onto the Q processes
are computed in such a way to ensure the most efficient running of the application on the underlying
heterogeneous network. Since our model of a heterogeneous network takes into account not only the
number of processors but also their performances and speed of communications among them, the
optimal data distribution may be not as regular as ScaLAPACK data distribution. In particular, the
number Q of processes, taking part in the computations, may be less that the total number of
processors. Taking into account the speed of communications may cause non-cyclic distribution of
column panels. To balance the load of processors of different performances, the widths of column
panels should be different. In addition, to achieve the balance between computations and
communications, widths of column panels will grow from left to right.

C.2. Experimental results

We compared the running time of our mpC program and its ScaLAPACK counterpart. We used three
SPARCstations 5 (hostnames gamma, beta, and delta), and SPARCclassic (omega) with relative
performances 160, 160, 160, and 77 correspondingly connected via 10Mbits Ethernet. We used several
distributed memory machines (DMMs): gbo, constituting of gamma, beta, and omega, gbd,
consisting of gamma, beta, and delta, and so on. Note, that topological characteristics of these
DMMs (processor performances and speeds of communication) are detected automatically by a
command of the mpC programming environment.

We used MPICH version 1.0.13 as a particular communication platform, GNU C compiler with
optimization option -O2, and GNU fortran compiler with optimization option -O4. As a base of the
comparison we used the running time of the LAPACK function dpotf2 implementing a sequential
Cholesky factorization. We started one process per workstation for both programs and used nb=5
(providing the best performance) for the ScaLAPACK one.

Table 1 gives speedups computed relative to the LAPACK routine running on gamma. One can see
that the mpC program and the ScaLAPACK routine take the same time when running on homogeneous
DMMs gb and gbd. If to enhance these machines with low-performance omega, then the mpC
program allows to utilize the parallel potential of performance-heterogeneous gbo and gbdo,
speeding up the Cholesky factorization. At the same time, its ScaLAPACK counterpart does not allow
to do it slowing down the Cholesky factorization. Note, that all above DMMs, consisting of Sun
workstations, are characterized by the same communication speed, high enough the mpC program to
involve all workstations in Cholesky factorization.

Table 1: Speedups computed relative to the LAPACK programm running on
gamma (Scal - ScaLAPACK) '

n gb gbo gbd gbdo

mpC ScalL mpC Scal mpC ScalL mpC ScalL
300 1.03 1.03 1.15 0.85 1.25 1.27 1.25 1.02
400 1.13 1.10 1.29 0.98 1.47 1.42 1.50 1.17
500 1.18 1.17 1.38 1.04 1.56_ 1.54 1.64 1.29
600 1.27 1.24 1.48 1.09 1.69 1.65 1.76 1.36 7
700 1.29 1.26 1.53 1.13 1.75 1.75 1.85 1.41
800 1.33 1.32 1.57 1.12 1.82 1.84 1.90 1.49




